

**STATE OF VERMONT
PUBLIC UTILITY COMMISSION**

Petition of Vermont Gas Systems,)
Inc., for a certificate of public good,)
pursuant to 20V.S.A. §248,)
authorizing the construction of the)
“Addison Natural Gas Project”)
consisting of approximately 41 miles) Case No. 17-3550-INV
of new natural gas transmission)
pipeline in Chittenden and Addison)
Counties, approximately 5 miles of)
new distribution mainlines in Addison)
County, together with three new)
stations in Williston, New Haven and)
Middlebury, Vermont.)
)

**PREFILED TESTIMONY OF
LAWRENCE SHELTON**

July 10, 2020

Summary: Mr. Shelton testifies about his direct personal knowledge of the depth of the pipeline in one part of the New Haven Swamp. When measured by Mr. Byrd by a probe inserted into the earth during the site visit, the pipeline was no more than 2.5 feet deep in three locations, and a total of 6 locations were less than 3 feet deep. The testing with the probe showed that the GPS readings, which VGS reported to the Commission, were wrong. In another section of the New Haven Swamp, which inspectors reported had the same conditions as the first section, Mr. Byrd did not measure the depth.

[Corrected 9-3-20 to replace “1641+75 by “1645+26” on page 3, line 11]

Exhibits: [1] 49 CFR 192.327
[2] Video September 19, 2016
[3] Photographs A & B September 19, 2016
[4] VELCO & VGS e-mail & attachments September 21, 2016
[5] September 28, 2016 Inspection Report
[6] September 29, 2016 Inspection Report

1 **Q. 1. Please identify yourself.**

2 A. 1. My name is Lawrence Shelton. I am a highly experienced project manager. I
3 began my career as a mason over 40 years ago, and for the past 30 years have worked as
4 a masonry project manager and estimator. My experience includes project estimation and
5 management of construction of what at the time was advertised as the largest brick
6 building in the world NIH Building 50, a hospital on the campus of the National Institute
7 of Health in Bethesda, Maryland.

8 **Q. 2. What is the purpose of your testimony?**

9 A. 2. I testify about my direct personal knowledge of the depth of the pipeline in the
10 “Clay Plains” section of the New Haven swamp. When measured by Mr Byrd by means
11 of a probe inserted into the earth, the pipeline was buried about 26 or 27 inches deep (as I
12 determined) or about 28 or 29 inches deep (as Mr. Byrd determined). Either way, several
13 were no more than 2.5 feet deep, and six were less than 3 feet deep. The testing with the
14 probe showed that the GPS readings, which VGS reported to the Commission, were
15 wrong. In the other section of the New Haven Swamp that inspectors reported had the
16 same conditions as the Clay Plains section, Mr. Byrd did not measure the depth. His
17 report continues to rely on the GPS data.

18 **Q. 3. What was your role leading up to in Mr. Byrd’s site visit?**

19 A. 3. According to the Board’s Final Order and the specifications and evidence
20 provided to the Board, among other specifications, all installation within the VELCO

VGS Addison Natural Gas Project, Case No. 17-3550-INV
Prefiled Testimony of Lawrence Shelton
July 10, 2020
Page 2 of 10

1 Right of Way were required to have at least 4 feet of depth of cover and the entire 41-
2 miles of the pipeline were required to meet PHMSA Class 3 standards. (Docket No.
3 7970, Order issued 12/23/13, Finding No. 26). Class 3 standards require 36 inches of
4 burial. (49 C.F.R. section 192.327, attached as **Shelton Exhibit 1**). In what has come to
5 be called the Clay Plains Swamp and the New Haven Swamp, located approximately at
6 station numbers 1640+ 00 through 1666+50 and 1944+80 through 1951+80 respectively,
7 the exhibits filed with the Commission, and also the specifications used by VGS during
8 construction, called for depth of cover of 4 feet, but VGS's engineers have determined it
9 can safely bear loads if it is 3 feet deep. Docket No. 7970, Order issued 12/23/13,
10 Findings No. 26, 62(d), 62(e); McClain letter to Commission June 2, 2017 (stating that
11 Commission order required 4 feet of depth within VELCO Right of Way, that the
12 pipeline satisfies engineering standards if it is at least 3 feet deep, that PHMSA standards
13 for Class 3 require 3 feet of depth, and the pipeline is at least 3 feet deep).

14 On September 19, 2016, in the evening, I took photographs and a video of the
15 construction process at the Clay Plains Swamp site. The photographs and video showed
16 the pipeline, in a ditch and awaiting cover. The top of the pipeline was less than two feet
17 from the surface of the surrounding land, as I explained in affidavits I submitted to the
18 Commission. Obviously, this would be a violation of the PUC Order and PHMSA
19 regulations. The photographs and video, which have already been filed with the
20 Commission, are attached as **Shelton Exhibit 2** and **Shelton Exhibit 3**.

21 Protect Geprags, a group of which I am a member, submitted my photographs,

VGS Addison Natural Gas Project, Case No. 17-3550-INV
Prefiled Testimony of Lawrence Shelton
July 10, 2020
Page 3 of 10

1 showing the depth of burial below the required amount, to the federal Pipeline and
2 Hazardous Materials Safety Administration (PHMSA) in October of 2016, and sought an
3 investigation of a number of issues. PHMSA subsequently shared my information
4 regarding the burial of the pipeline with VGS. In a public meeting held on February 22,
5 2017, I shared directly with the Department and with VGS my concerns about the depth of
6 pipe burial in New Haven, including the Clay Plains Swamp.

7 On March 3, 2017, Mr. G.C. Morris, the inspector for the Department of Public
8 Service, and I visited the area shown in my video and photographs. (the Clay Plains
9 Swamp). We found a marker, created by VGS, or VGS's contractor, directly over the
10 buried pipeline. The wooden marker indicated that the pipeline was buried 3.5 feet at that
11 location, approximate station number 1645+26. During that visit with Mr. Morris, told me
12 that the pipeline that I had observed in September had been reburied by VGS to a deeper
13 depth. During this same visit, Mr. Morris told me that VGS used an excavator to press
14 down on the pipe with enough force to push it down through the soil. However, Mr. Morris'
15 only apparent source of information was VGS, since Mr. Morris made clear he had not
16 been present. This is also the area in which the excavator had been mired and stuck in,
17 according to Carl Bubolz's deposition (which I have read), this was on September 15, 2016.

18 During the meeting that was held at Attorney Dumont's office on February 27,
19 2019, I showed the video to Mr. Byrd on a laptop which was passed around the table, so
20 that all present could view it. I also showed my photographs, some of which had been
21 enlarged to poster size. I gave the posters to Mr. Byrd as well. Mr. Byrd asked me

1 questions about the video, the photographs and what I recalled from that visit. The video
2 and photos were given to him on a flash drive.

3 When Mr. Byrd scheduled his visit to the Clay Plains Swamp, I accompanied him.
4 Originally, Mr. Byrd had emailed to us that no one other than VGS employees and himself
5 would be allowed to participate in the Clay Plains site visit. However, after our attorney
6 protested that at least I should attend, Mr. Byrd backed down and agreed that I could
7 accompany him. I did so, on August 27, 2019.

8 **Q. 4. State the depth of cover that you and Mr. Byrd determined during the visit to the
9 swamp in New Haven called the Clay Plains Swamp, and explain how it was
10 determined.**

11 A. 4. The plan that was shared with me by Mr. Byrd was for VGS technicians to find the
12 above-ground pedestals to disconnect the zinc ribbon, so that an electronic measuring
13 device could function. However, the technicians were unable to do so. Accordingly we
14 could not utilize the intended electronic equipment to detect the burial depth.

15 One of VGS technicians was able to locate the pipeline with a fiberglass probe. The
16 only problem: no one had a measuring tape to measure the depth of the probe.

17 I had an 8.5" x 11" line notepad I had brought to take notes. Mr. Byrd borrowed a
18 sheet of my paper and suggested that this page was 8.5" wide and that we would measure
19 the burial depth of the pipeline by probing around until we hit what we thought was the
20 pipeline, hold a thumb at ground level, extract the probe, and 'measure' it with the piece
21 of notepaper.

VGS Addison Natural Gas Project, Case No. 17-3550-INV
Prefiled Testimony of Lawrence Shelton
July 10, 2020
Page 5 of 10

1 In several locations I personally observed that, when my notepad was used as the
2 ruler, the probe measured no more than, and probably less than, 3 page-widths deep (3 x
3 8.5" = 25.5"). In other words, the pipeline was, at most an inch and a half more than 2 feet
4 deep. Mr. Byrd, after measuring the depth to be three page widths, declared "We'll call
5 that 30 inches."

6 Mr. Byrd's Attachment 9 is difficult to read, but if you turn to pages 8 and 9 you
7 will see how Mr. Byrd reported these crude measurements. They are reproduced here:

VGS Addison Natural Gas Project, Case No. 17-3550-INV
Prefiled Testimony of Lawrence Shelton
July 10, 2020
Page 6 of 10

According to Mr. Byrd's Attachment 9, he made six measurements starting at station number 1645+80 and ending at station number 1648+40, a distance of 260 feet, where the pipeline was less than three feet deep. His reported measurements are: 2'9"; 2'9"; 2'6"; 2'6"; 2'5"; and 2'11". He determined this to be the depth of burial, as shown in his Attachment 9.

I disagree with his reported numbers. As stated, in several locations the depth was just barely more than three page widths, which is 25.5 inches, so the pipe was at most 2'3" or 2'4" deep. Each of my observations, and Mr. Byrd's observations, were made in the presence of VGS staff.

I know I don't have to remind the Commission that its order was based upon plans and exhibits stating that within the VELCO Right of Way depth of burial would be 4 feet.

1 I also am sure that the Commission is aware that VGS has justified its deviation from that
2 standard by reference to an engineering report from Hatch Mott MacDonald dated May 25,
3 2016, already on file with the Commission, which states that burial less than 4 feet would
4 be adequate – so long as the minimum depth is 3 feet. I attach that report, and VELCO’s
5 email adopting that standard on September 21, 2016, as **Shelton Exhibit 4**. VGS’s
6 commitment to satisfy Class 3 also required at least 3 feet of cover.

7 In sum, my testimony is that Mr. Byrd and I both personally determined that the
8 ANGP was constructed less than 3 feet deep in the in the Clay Plains section of the New
9 Haven Swamp. Attachment 9 lists six locations. We disagree whether at its most shallow
10 point it is 25 or 26 inches deep, as I determined, or 30 or 31 inches deep, as he determined.

11 **Q. 5. Did you and/or Mr. Byrd use the probe to measure depth of cover in the other
12 swamp in New Haven, sometimes referred to as the “New Haven Swamp?”**

13 A. 5. No. The measurements Mr. Byrd and I made in the Clay Plains Swamp demonstrated
14 that the GPS data reported by Mr. St. Hilaire to the Commission were wrong. The VGS
15 inspections state that in the area referred to as the New Haven Swamp, further south, at
16 station numbers 1944+80- 1951+80, the same conditions were encountered and the same
17 construction method was used. The inspection reports dated September 28 and September
18 29 attached to this testimony as **Shelton Exhibits 5 and 6** state that VELCO had approved
19 of “variance” allowing deviating from the 4-foot standard for this section of the pipeline.
20 I had to leave the August 27, 2019 site visit before it was over. Upon reading Mr. Byrd’s
21 report, Attachment 9, I discovered that he did not use the probe to measure actual depth of

VGS Addison Natural Gas Project, Case No. 17-3550-INV
Prefiled Testimony of Lawrence Shelton
July 10, 2020
Page 8 of 10

1 cover at station numbers 1944+80 to 1951+80.

2 The following page of his Attachment show that he did not use the probe to
3 determine depth of burial at these station numbers:

ANGP Site Visit Summary Findings

Station	Date	Next Test	Next Test	Depth	Iteration	Remarks/Findings	1000	1000	1000	1000	1000	1000
1644+80												
1645+80												
1646+80												
1647+80												
1648+80												
1649+80												
1650+80												
1651+80												
1652+80												
1653+80												
1654+80												
1655+80												
1656+80												
1657+80												
1658+80												
1659+80												
1660+80												
1661+80												
1662+80												
1663+80												
1664+80												
1665+80												
1666+80												
1667+80												
1668+80												
1669+80												
1670+80												
1671+80												
1672+80												
1673+80												
1674+80												
1675+80												
1676+80												
1677+80												
1678+80												
1679+80												
1680+80												
1681+80												
1682+80												
1683+80												
1684+80												
1685+80												
1686+80												
1687+80												
1688+80												
1689+80												
1690+80												
1691+80												
1692+80												
1693+80												
1694+80												
1695+80												
1696+80												
1697+80												
1698+80												
1699+80												
1700+80												
1701+80												
1702+80												
1703+80												
1704+80												
1705+80												
1706+80												
1707+80												
1708+80												
1709+80												
1710+80												
1711+80												
1712+80												
1713+80												
1714+80												
1715+80												
1716+80												
1717+80												
1718+80												
1719+80												
1720+80												
1721+80												
1722+80												
1723+80												
1724+80												
1725+80												
1726+80												
1727+80												
1728+80												
1729+80												
1730+80												
1731+80												
1732+80												
1733+80												
1734+80												
1735+80												
1736+80												
1737+80												
1738+80												
1739+80												
1740+80												
1741+80												
1742+80												
1743+80												
1744+80												
1745+80												
1746+80												
1747+80												
1748+80												
1749+80												
1750+80												
1751+80												
1752+80												
1753+80												
1754+80												
1755+80												
1756+80												
1757+80												
1758+80												
1759+80												
1760+80												
1761+80												
1762+80												
1763+80												
1764+80												
1765+80												
1766+80												
1767+80												
1768+80												
1769+80												
1770+80												
1771+80												
1772+80												
1773+80												
1774+80												
1775+80												
1776+80												
1777+80												
1778+80												
1779+80												
1780+80												
1781+80												
1782+80												
1783+80												
1784+80												
1785+80												
1786+80												
1787+80												
1788+80												
1789+80												
1790+80												
1791+80												
1792+80												
1793+80												
1794+80												
1795+80												
1796+80												
1797+80												
1798+80												
1799+80												
1800+80												
1801+80												
1802+80												
1803+80												
1804+80												
1805+80												
1806+80												
1807+80												
1808+80												
1809+80				</td								

1 propose a survey for the remainder of the 41-mile length of the pipeline.

2 **Q. 7. As the representative of the Intervenors who participated in the site visit and**
3 **discussed with Mr. Byrd during the site visit what the probing revealed, were you**
4 **surprised to read Mr. Byrd's report?**

5 A. 7. Yes, for several reasons. On page 69 of his report he acknowledges that the Depth of
6 Cover required by the CPG for the VELCO Right of Way is 4 feet, and that "technically"
7 this was not honored. He explains that the Commission could not have intended that VGS
8 would have to comply with this standard so long as VELCO accepted a lesser standard.

9 This explanation surprised me. I am an Intervenor. I had read the Commission's
10 12/23/13 order and the Hearing Officer's orders opening and broadening the scope of this
11 investigation, and also the Commission's contract with Mr. Byrd and RCP. The
12 Commission's 12/23/13 Order does not say a party that entered into a MOU with VGS,
13 whether it was VELCO, a state agency, a town or a landowner, has the authority to
14 unilaterally approve of a deviation from a standard in the Commission's order on the basis
15 that their MOU was a source of the standard. I am not a lawyer (nor is Mr. Byrd), but his
16 reading seemed tortured.

17 I was also surprised because the orders pertaining to the investigation, and the
18 contract, both called upon Mr. Byrd to determine whether the plans and evidence
19 submitted to the Commission had been complied with, not whether the signer of an MOU
20 had the authority to allow VGS to depart from those plans and evidence.

21 What really surprised me -- even if VELCO did have the authority that Mr. Byrd

1 claims – is that Mr. Byrd knows that VELCO did not approve of depth of burial less than
2 3 feet. VGS's own engineers, Hatch Mott MacDonald, stated in their report that 3 feet was
3 the minimum necessary for safety. Based on Hatch Mott MacDonald report, which VELCO
4 relied upon and which Mr. Byrd states he read, VELCO accepted less than 4 feet. Class 3
5 also requires at least 3 feet. Mr. Byrd himself determined that the depth of the pipeline is
6 less than 3 feet -- in fact, little more than half the depth required by the Commission's
7 order.

8 **Q. 7. You have been referring to Attachment 9 of Mr. Byrd's report, which shows
9 depth of burial less than 3 feet at six locations within the VELCO Right of Way in
10 New Haven. In the body of his Report, does he address his determination that in six
11 locations within the VELCO Right of Way the pipeline is buried less than 3 feet
12 deep, and that VELCO accepted the departure from 4-foot depth on the basis that
13 there would be at least 3-foot depth?**

14 A. No. The only discussion I could find that might justify ignoring the measurements we
15 took is his statement that when one steps in the swamp one's foot sometimes sinks 6
16 inches deep in the muck (p.69). This suggests that perhaps the measurements we took we
17 made in a footprint. When we measured the depth of cover using the probe, we did not
18 measure it within a footprint where someone had sunk into the muck.

19 This concludes my testimony.

49 CFR 192.327

This document is current through the July 8, 2020 issue of the Federal Register with the exception of the amendment appearing at 85 FR 41100. Title 3 is current through July 2, 2020.

Code of Federal Regulations > TITLE 49 -- TRANSPORTATION > SUBTITLE B -- OTHER REGULATIONS RELATING TO TRANSPORTATION > CHAPTER I -- PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION > SUBCHAPTER D -- PIPELINE SAFETY > PART 192--TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS > SUBPART G -- GENERAL CONSTRUCTION REQUIREMENTS FOR TRANSMISSION LINES AND MAINS

§ 192.327 Cover.

(a) Except as provided in paragraphs (c), (e), (f), and (g) of this section, each buried transmission line must be installed with a minimum cover as follows:

Location	Normal	Consolidated
	soil	rock
Inches (Millimeters)		
Class 1 locations	30 (762)	18 (457)
Class 2, 3, and 4 locations	36 (914)	24 (610)
Drainage ditches of public roads and railroad crossings	36 (914)	24 (610)

(b) Except as provided in paragraphs (c) and (d) of this section, each buried main must be installed with at least 24 inches (610 millimeters) of cover.

(c) Where an underground structure prevents the installation of a transmission line or main with the minimum cover, the transmission line or main may be installed with less cover if it is provided with additional protection to withstand anticipated external loads.

(d) A main may be installed with less than 24 inches (610 millimeters) of cover if the law of the State or municipality:

- (1)** Establishes a minimum cover of less than 24 inches (610 millimeters);
- (2)** Requires that mains be installed in a common trench with other utility lines; and
- (3)** Provides adequately for prevention of damage to the pipe by external forces.

(e) Except as provided in paragraph (c) of this section, all pipe installed in a navigable river, stream, or harbor must be installed with a minimum cover of 48 inches (1,219 millimeters) in soil or 24 inches (610 millimeters) in consolidated rock between the top of the pipe and the underwater natural bottom (as determined by recognized and generally accepted practices).

(f) All pipe installed offshore, except in the Gulf of Mexico and its inlets, under water not more than 200 feet (60 meters) deep, as measured from the mean low tide, must be installed as follows:

(1) Except as provided in paragraph (c) of this section, pipe under water less than 12 feet (3.66 meters) deep, must be installed with a minimum cover of 36 inches (914 millimeters) in soil or 18 inches (457 millimeters) in consolidated rock between the top of the pipe and the natural bottom.

(2) Pipe under water at least 12 feet (3.66 meters) deep must be installed so that the top of the pipe is below the natural bottom, unless the pipe is supported by stanchions, held in place by anchors or heavy concrete coating, or protected by an equivalent means.

(g) All pipelines installed under water in the Gulf of Mexico and its inlets, as defined in § 192.3, must be installed in accordance with § 192.612(b)(3).

STATE OF VERMONT
PUBLIC UTILITY COMMISSION

Petition of Vermont Gas Systems,)
Inc., for a certificate of public good,)
pursuant to 20V.S.A. §248,)
authorizing the construction of the)
“Addison Natural Gas Project”)
consisting of approximately 41 miles) Case No. 17-3550-INV
of new natural gas transmission)
pipeline in Chittenden and Addison)
Counties, approximately 5 miles of)
new distribution mainlines in Addison)
County, together with three new)
stations in Williston, New Haven and)
Middlebury, Vermont.)
)

PREFILED TESTIMONY OF
LAWRENCE SHELTON

July 10, 2020

EXHIBIT 2
CLAY PLAINS SWAMP VIDEO
SEPTEMBER 19, 2016

Docket 7970
6th Non-Substantial
Change Determination
Response
6/23/17
Attachment #15

Docket 7970
6th Non-Substantial
Change Determination
Response
6/23/17
Attachment #17

From: Peter W. Lind [<mailto:PLIND@velco.com>]
Sent: Wednesday, September 21, 2016 5:21 AM
To: John St.Hilaire <jsthilaire@vermontgas.com>
Cc: John Stamatov (US - Advisory) (john.r.stamatov@pwc.com) <john.r.stamatov@pwc.com>; Reagan, Michael J (Michael.Reagan@mottmac.com) <Michael.Reagan@mottmac.com>; Brian Connaughton <BCONNAUGHTON@velco.com>; Mike Fiske <MFISKE@velco.com>; Mark Sciarrotta <MSCIARROTTA@velco.com>; Eric Frazer (efrazer@eceanh.com) <efrazer@eceanh.com>
Subject: Vermont Gas Project - Clay Plains Issue - VELCO K43 Structures 262 - 263

Good morning John.

Thank you for the follow-up responses and information on the issues you are having in obtaining the 4' foot burial depth of the gas pipeline in the Clay Plains area along VELCO's K43 transmission line between structures 262 and 263. Based upon this information and our discussions yesterday afternoon; VELCO agrees for you to move forward with the installation of the gas pipeline at less than the agreed upon 4' depth in this area with the following conditions as we discussed:

- VGS to document the specific area where the pipe is not going to be installed at the agreed upon 4' depth (Survey, pictures, as-built drawings, etc.).
- VGS will use all reasonable measures to maximize and maintain the loading factor to the HS-20 & 15% as possible with concrete coatings and other measures, etc.
- VGS to confirm with PE engineering analysis that the HS-20 & 15% loading factor will be obtained and maintained at this location with the diminished burial depth.
- Additional VGS standard yellow location markers will be installed over the pipeline every 50 feet at this Clay Plains area for the estimated 300 feet section such that it is visibly marked.
- VELCO and VGS will memorialize this specific variance from our established agreement for the standard installation of the gas pipeline at four feet along the VELCO ROW and access roads.

I trust that this correctly represents the issues we addressed and agreed to in our discussion. Please review and confirm. Thanks John.

Best regards,

Peter

Peter W. Lind
Senior Project Manager
Vermont Electric Power Company
366 Pinnacle Ridge Road
Rutland, VT 05701

Tel: (802) 770-6292

Mobile: (802) 353-0418
Fax: (802) 770-6449
plind@velco.com
www.velco.com

From: John St.Hilaire [<mailto:jsthilaire@vermontgas.com>]
Sent: Tuesday, September 20, 2016 12:26 PM
To: Peter W. Lind
Cc: Brian Connaughton; john.r.stamatov@pwc.com; Reagan, Michael J (Michael.Reagan@mottmac.com)
Subject: FW: Draft VELCO compaction reply

Hi Peter.

Thanks for the call today. We appreciate your team working expeditiously to review this issue for us. You asked for documentation on compaction for this line. I am attaching a compaction report from Mott McDonald that indicates the compaction of HS20+15% can be met with our 12" pipe specifications with all soils at a depth of 3' or greater. The pipe in the affected area is concrete coated which will only increase the loading capacity of the pipe.

The details of the field conditions were conveyed by Mike Reagan via e-mail on 9/19/16.

We will plan to install line markers every 50'in the affected area if the 3' of cover is approved.

Should you have further questions, please let us know.

John St.Hilaire

Project Name: Vermont Gas Systems

5/25/2016

Location: Burlington, VT

Rev. 1

Prepared for: Vermont Gas Systems

Prepared by: Mott MacDonald

Purpose:

Mott MacDonald has prepared the stress calculations included herein for Vermont Gas Systems, to ensure the pipeline's integrity under loading without compaction of backfill. The stress calculations were performed per API 1102, using various combinations of soil type and depth of cover to confirm that 90% compaction will not be necessary.

Knowns:

- Class 3 Location, Design Factor of 0.5
- 12.75 inch OD
- 0.312 inch WT
- API-5L Electric Resistance Welded
- Grade X-65
- MAOP of 1440 psi
- Design Wheel Load HS-20 + 15%

Results:

A summary table has been provided below. The stress calculations show that under all soil types, paired with 3', 4', and 5' of cover, the pipeline passes all stress checks (Hoop, Effective, Girth Weld, and Longitudinal Weld). In conclusion, Mott MacDonald recommends a minimum depth of cover of 4 feet. Although 3 feet of cover is sufficient under the given loading, a one foot buffer would help ensure that even if settlement were to occur, the pipeline would remain safe and operational.

API 1102 STRESS CALCULATION RESULTS			
	Calculated Effective Stress (psi)		
Soil type	3' Cover	4' Cover	5' Cover
Soft to medium clays and silts with high plasticities	31,239	31,437	31,234
Soft to medium clays and silts with low/medium plasticities	31,180	31,370	31,159
Loose sands and gravels	30,360	30,550	30,427
Stiff to very stiff clays and silts	30,216	30,366	30,193
Medium dense sands and gravels	30,278	30,453	30,318
Dense to very dense sands and gravels	29,422	29,554	29,437
ALLOWABLE EFFECTIVE STRESS (psi)	32,500		
<u>Note:</u>			
1. Calculated girth weld and longitudinal weld stress values were less than the allowable (Girth: 6,000 psi & Long. Welds: 11,500 psi).			

Calculation cover sheet

Project Title:	VERMONT GAS SYSTEMS	Project No.:	351481KK01
File No.:		No. of Sheets:	18
Section:		Subject:	
Calc No.:			
Project Manager:		Designer:	
Design Phase:	A - Concept or preliminary	C - Design verification	
	B - Analysis and detailed design	D - Other (specify)	

Computer Applications Used:	
Title:	Version Date:
PIPELINE TOOLBOX	2013

Scopes for Checking Manual and Computer Generated Calculations:

- > Back check project information
- > Back check individual calculations to verify results

Sheets Checked: *	Calculations by:			Checked By:		
	Name:	Signature:	Date:	Name:	Signature:	Date:
18/18	K. KIBBE	Kerry Kibbe	5/25/16	J. Wujcik	JL.	5/25/16

*If an Excel spreadsheet or other computer file has been checked and has not been attached, enter the name, date and full file path or PIMS location of the file that was checked. (PIMS nickname or short link from Properties – General could also be useful.)

a) Basic Design Information or Source and Reference:

- > Design Info. per Mike Reagan's discussions with client
- > API 1102 for design factors and procedure

b) Identify documents/technical records where output will be used:

> calculations summary provided to client

Approved by Project Manager:	Signature: Print name: Joseph Wojnas	Date: 5/25/16
------------------------------	---	------------------

Distribution: Original to project file

Project Vermont Gas Systems		Date 5/24/2016
Location Burlington, VT		

API 1102 - Gas Pipeline Crossing Highway

PIPE AND OPERATIONAL DATA:

Operating Pressure [psi]	1440
Location Class:	3
Operating Temperature [°F]	60.0
Pipe Outside Diameter [in]	12.75
Pipe Wall Thickness [in]	0.312
Pipe Grade:	X65
Specified Minimum Yield Stress	65,000
Design Factor	0.50
Longitudinal Joint Factor	1.0
Temperature Derating Factor	1.000
Pipe Class:	API 5L Electric Resistance Welded
Young's Modulus for Steel [ksi]	30,000
Poisson's Ratio for Steel	0.30
Coefficient of Thermal Expansion [per°F]	0.0000065

SITE AND INSTALLATION DATA:

Soil Type:	Soft to medium clays and silts with high plasticities
E' - Modulus of Soil Reaction [ksi]	0.2
Er - Resilient Modulus [ksi]	5.0
Average Unit Weight of Soil [lb/ft³]	120.00
Pipe Depth [ft]	3
Bored Diameter [in]	12.75
Installation Temperature [°F]	60.0
Design Wheel Load from Single Axle [kips]	18.4
Design Wheel Load from Tandem Axles [kips]	18.4
Pavement Type:	None
Impact Factor Method:	ASCE - Highway
Safety Factor Applied: API 1102 Procedure	

RESULTS

Hoop Stress [psi]	29,423	Maximum Circumferential Stress [psi]	34,305
Allowable Hoop Stress [psi]	32,500	Maximum Longitudinal Stress [psi]	12,239
Stiffness Factor for Earth Load Circumferential Stress	2,196	Maximum Radial Stress [psi]	-1,440
Burial Factor for Earth Load Circumferential Stress	0.83	Total Effective Stress [psi]	31,239
Excavation Factor for Earth Load Circumferential Stress	0.83	Allowable Effective Stress [psi]	32,500
Circumferential Stress from Earth Load [psi]	1,331		
Impact Factor	1.50	Stress [psi]	Calculated
Highway Stiffness Factor for Cyclic Circumferential	16.60	Hoop	29,423
Highway Geometry Factor for Cyclic Circumferential	1.22	Effective	31,239
Cyclic Circumferential Stress [psi]	4,271	Girth Welds	3,229
Highway Stiffness Factor for Cyclic Longitudinal Stress	13.20	Long. Welds	4,271
Highway Geometry Factor for Cyclic Longitudinal Stress	1.16		11,500
Cyclic Longitudinal Stress [psi]	3,229		PASS/FAIL

Notes: Open cut construction, calculations run using HS-20 loading + 15%

Reference: API RP 1102 "Steel Pipelines Crossing Railroads and Highways"

Prepared By Kelsey Kibbe	Approved By	Revision: 13.0.1
--------------------------	-------------	------------------

Project Vermont Gas Systems		
Location Burlington, VT	Date 5/24/2016	

API 1102 - Gas Pipeline Crossing Highway

PIPE AND OPERATIONAL DATA:

Operating Pressure [psi]	1440
Location Class:	3
Operating Temperature [°F]	60.0
Pipe Outside Diameter [in]	12.75
Pipe Wall Thickness [in]	0.312
Pipe Grade:	X65
Specified Minimum Yield Stress	65,000
Design Factor	0.50
Longitudinal Joint Factor	1.0
Temperature Derating Factor	1.000
Pipe Class:	API 5L Electric Resistance Welded
Young's Modulus for Steel [ksi]	30,000
Poisson's Ratio for Steel	0.30
Coefficient of Thermal Expansion [per°F]	0.0000065

SITE AND INSTALLATION DATA:

Soil Type:	Soft to medium clays and silts with high plasticities
E' - Modulus of Soil Reaction [ksi]	0.2
Er - Resilient Modulus [ksi]	5.0
Average Unit Weight of Soil [lb/ft³]	120.00
Pipe Depth [ft]	4
Bored Diameter [in]	12.75
Installation Temperature [°F]	60.0
Design Wheel Load from Single Axle [kips]	18.4
Design Wheel Load from Tandem Axles [kips]	18.4
Pavement Type:	None
Impact Factor Method:	ASCE - Highway
Safety Factor Applied: API 1102 Procedure	

RESULTS

Hoop Stress [psi]	29,423	Maximum Circumferential Stress [psi]	34,529
Allowable Hoop Stress [psi]	32,500	Maximum Longitudinal Stress [psi]	12,306
Stiffness Factor for Earth Load Circumferential Stress	2,196	Maximum Radial Stress [psi]	-1,440
Burial Factor for Earth Load Circumferential Stress	0.97	Total Effective Stress [psi]	31,437
Excavation Factor for Earth Load Circumferential Stress	0.83	Allowable Effective Stress [psi]	32,500
Circumferential Stress from Earth Load [psi]	1,555		
Impact Factor	1.50	Stress [psi]	Calculated
Highway Stiffness Factor for Cyclic Circumferential	16.60	Hoop	29,423
Highway Geometry Factor for Cyclic Circumferential	1.22	Effective	31,437
Cyclic Circumferential Stress [psi]	4,271	Girth Welds	3,229
Highway Stiffness Factor for Cyclic Longitudinal Stress	13.20	Long. Welds	4,271
Highway Geometry Factor for Cyclic Longitudinal Stress	1.16		Allowable
Cyclic Longitudinal Stress [psi]	3,229		PASS/FAIL

Notes: Open cut construction, calculations run using HS-20 loading + 15%

Reference: API RP 1102 "Steel Pipelines Crossing Railroads and Highways"

Prepared By Kelsey Kibbe	Approved By	Revision: 13.0.1
---------------------------------	-------------	------------------

Project Vermont Gas Systems		Date 5/24/2016
Location Burlington, VT		

API 1102 - Gas Pipeline Crossing Highway

PIPE AND OPERATIONAL DATA:

Operating Pressure [psi]	1440
Location Class:	3
Operating Temperature [°F]	60.0
Pipe Outside Diameter [in]	12.75
Pipe Wall Thickness [in]	0.312
Pipe Grade:	X65
Specified Minimum Yield Stress	65,000
Design Factor	0.50
Longitudinal Joint Factor	1.0
Temperature Derating Factor	1.000
Pipe Class:	API 5L Electric Resistance Welded
Young's Modulus for Steel [ksi]	30,000
Poisson's Ratio for Steel	0.30
Coefficient of Thermal Expansion [per°F]	0.0000065

SITE AND INSTALLATION DATA:

Soil Type:	Soft to medium clays and silts with high plasticities
E' - Modulus of Soil Reaction [ksi]	0.2
Er - Resilient Modulus [ksi]	5.0
Average Unit Weight of Soil [lb/ft³]	120.00
Pipe Depth [ft]	5
Bored Diameter [in]	12.75
Installation Temperature [°F]	60.0
Design Wheel Load from Single Axle [kips]	18.4
Design Wheel Load from Tandem Axles [kips]	18.4
Pavement Type:	None
Impact Factor Method:	ASCE - Highway
Safety Factor Applied: API 1102 Procedure	

RESULTS

Hoop Stress [psi]	29,423	Maximum Circumferential Stress [psi]	34,285
Allowable Hoop Stress [psi]	32,500	Maximum Longitudinal Stress [psi]	12,136
Stiffness Factor for Earth Load Circumferential Stress	2,196	Maximum Radial Stress [psi]	-1,440
Burial Factor for Earth Load Circumferential Stress	1.08	Total Effective Stress [psi]	31,234
Excavation Factor for Earth Load Circumferential Stress	0.83	Allowable Effective Stress [psi]	32,500
Circumferential Stress from Earth Load [psi]	1,732		
Impact Factor	1.50	Stress [psi]	Calculated
Highway Stiffness Factor for Cyclic Circumferential	16.60	Hoop	29,423
Highway Geometry Factor for Cyclic Circumferential	1.10	Effective	31,234
Cyclic Circumferential Stress [psi]	3,850	Girth Welds	3,006
Highway Stiffness Factor for Cyclic Longitudinal Stress	13.20	Long. Welds	11,500
Highway Geometry Factor for Cyclic Longitudinal Stress	1.08		
Cyclic Longitudinal Stress [psi]	3,006		

Notes: Open cut construction, calculations run using HS-20 loading + 15%

Reference: API RP 1102 "Steel Pipelines Crossing Railroads and Highways"

Prepared By Kelsey Kibbe	Approved By	Revision: 13.0.1
--------------------------	-------------	------------------

Project Vermont Gas Systems		Date 5/24/2016
Location Burlington, VT		

API 1102 - Gas Pipeline Crossing Highway

PIPE AND OPERATIONAL DATA:

Operating Pressure [psi]	1440
Location Class:	3
Operating Temperature [°F]	60.0
Pipe Outside Diameter [in]	12.75
Pipe Wall Thickness [in]	0.312
Pipe Grade:	X65
Specified Minimum Yield Stress	65,000
Design Factor	0.50
Longitudinal Joint Factor	1.0
Temperature Derating Factor	1.000
Pipe Class:	API 5L Electric Resistance Welded
Young's Modulus for Steel [ksi]	30,000
Poisson's Ratio for Steel	0.30
Coefficient of Thermal Expansion [per°F]	0.0000065

SITE AND INSTALLATION DATA:

Soil Type:	Soft to medium clays and silts with low/medium plasticities
E' - Modulus of Soil Reaction [ksi]	0.5
Er - Resilient Modulus [ksi]	5.0
Average Unit Weight of Soil [lb/ft³]	120.00
Pipe Depth [ft]	3
Bored Diameter [in]	12.75
Installation Temperature [°F]	60.0
Design Wheel Load from Single Axle [kips]	18.4
Design Wheel Load from Tandem Axles [kips]	18.4
Pavement Type:	None
Impact Factor Method:	ASCE - Highway
Safety Factor Applied: API 1102 Procedure	

RESULTS

Hoop Stress [psi]	29,423	Maximum Circumferential Stress [psi]	34,239		
Allowable Hoop Stress [psi]	32,500	Maximum Longitudinal Stress [psi]	12,219		
Stiffness Factor for Earth Load Circumferential Stress	2,088	Maximum Radial Stress [psi]	-1,440		
Burial Factor for Earth Load Circumferential Stress	0.83	Total Effective Stress [psi]	31,180		
Excavation Factor for Earth Load Circumferential Stress	0.83	Allowable Effective Stress [psi]	32,500		
Circumferential Stress from Earth Load [psi]	1,265				
Impact Factor	1.50	Stress [psi]	Calculated	Allowable	PASS/FAIL
Highway Stiffness Factor for Cyclic Circumferential	16.60	Hoop	29,423	32,500	PASS
Highway Geometry Factor for Cyclic Circumferential	1.22	Effective	31,180	32,500	PASS
Cyclic Circumferential Stress [psi]	4,271	Girth Welds	3,229	6,000	PASS
Highway Stiffness Factor for Cyclic Longitudinal Stress	13.20	Long. Welds	4,271	11,500	PASS
Highway Geometry Factor for Cyclic Longitudinal Stress	1.16				
Cyclic Longitudinal Stress [psi]	3,229				

Notes: Open cut construction, calculations run using HS-20 loading + 15%

Reference: API RP 1102 "Steel Pipelines Crossing Railroads and Highways"

Prepared By Kelsey Kibbe	Approved By	Revision: 13.0.1
-----------------------------	-------------	------------------

Project Vermont Gas Systems		Date 5/24/2016
Location Burlington, VT		

API 1102 - Gas Pipeline Crossing Highway

PIPE AND OPERATIONAL DATA:

Operating Pressure [psi]	1440
Location Class:	3
Operating Temperature [°F]	60.0
Pipe Outside Diameter [in]	12.75
Pipe Wall Thickness [in]	0.312
Pipe Grade:	X65
Specified Minimum Yield Stress	65,000
Design Factor	0.50
Longitudinal Joint Factor	1.0
Temperature Derating Factor	1.000
Pipe Class:	API 5L Electric Resistance Welded
Young's Modulus for Steel [ksi]	30,000
Poisson's Ratio for Steel	0.30
Coefficient of Thermal Expansion [per°F]	0.0000065

SITE AND INSTALLATION DATA:

Soil Type:	Soft to medium clays and silts with low/medium plasticities	0.5
E' - Modulus of Soil Reaction [ksi]		
Er - Resilient Modulus [ksi]	5.0	
Average Unit Weight of Soil [lb/ft³]	120.00	
Pipe Depth [ft]	4	
Bored Diameter [in]	12.75	
Installation Temperature [°F]	60.0	
Design Wheel Load from Single Axle [kips]	18.4	
Design Wheel Load from Tandem Axles [kips]	18.4	
Pavement Type:	None	
Impact Factor Method:	ASCE - Highway	
Safety Factor Applied: API 1102 Procedure		

RESULTS

Hoop Stress [psi]	29,423	Maximum Circumferential Stress [psi]	34,453		
Allowable Hoop Stress [psi]	32,500	Maximum Longitudinal Stress [psi]	12,284		
Stiffness Factor for Earth Load Circumferential Stress	2,088	Maximum Radial Stress [psi]	-1,440		
Burial Factor for Earth Load Circumferential Stress	0.97	Total Effective Stress [psi]	31,370		
Excavation Factor for Earth Load Circumferential Stress	0.83	Allowable Effective Stress [psi]	32,500		
Circumferential Stress from Earth Load [psi]	1,479				
Impact Factor	1.50	Stress [psi]	Calculated	Allowable	PASS/FAIL
Highway Stiffness Factor for Cyclic Circumferential	16.60	Hoop	29,423	32,500	PASS
Highway Geometry Factor for Cyclic Circumferential	1.22	Effective	31,370	32,500	PASS
Cyclic Circumferential Stress [psi]	4,271	Girth Welds	3,229	6,000	PASS
Highway Stiffness Factor for Cyclic Longitudinal Stress	13.20	Long. Welds	4,271	11,500	PASS
Highway Geometry Factor for Cyclic Longitudinal Stress	1.16				
Cyclic Longitudinal Stress [psi]	3,229				

Notes: Open cut construction, calculations run using HS-20 loading + 15%

Reference: API RP 1102 "Steel Pipelines Crossing Railroads and Highways"

Prepared By Kelsey Kibbe	Approved By	Revision: 13.0.1
--------------------------	-------------	------------------

Project Vermont Gas Systems		
Location Burlington, VT	Date 5/24/2016	

API 1102 - Gas Pipeline Crossing Highway

PIPE AND OPERATIONAL DATA:

Operating Pressure [psi]	1440
Location Class:	3
Operating Temperature [°F]	60.0
Pipe Outside Diameter [in]	12.75
Pipe Wall Thickness [in]	0.312
Pipe Grade:	X65
Specified Minimum Yield Stress	65,000
Design Factor	0.50
Longitudinal Joint Factor	1.0
Temperature Derating Factor	1.000
Pipe Class:	API 5L Electric Resistance Welded
Young's Modulus for Steel [ksi]	30,000
Poisson's Ratio for Steel	0.30
Coefficient of Thermal Expansion [per°F]	0.0000065

SITE AND INSTALLATION DATA:

Soil Type:	Soft to medium clays and silts with low/medium plasticities
E' - Modulus of Soil Reaction [ksi]	0.5
Er - Resilient Modulus [ksi]	5.0
Average Unit Weight of Soil [lb/ft³]	120.00
Pipe Depth [ft]	5
Bored Diameter [in]	12.75
Installation Temperature [°F]	60.0
Design Wheel Load from Single Axle [kips]	18.4
Design Wheel Load from Tandem Axles [kips]	18.4
Pavement Type:	None
Impact Factor Method:	ASCE - Highway
Safety Factor Applied: API 1102 Procedure	

RESULTS

Hoop Stress [psi]	29,423	Maximum Circumferential Stress [psi]	34,200
Allowable Hoop Stress [psi]	32,500	Maximum Longitudinal Stress [psi]	12,111
Stiffness Factor for Earth Load Circumferential Stress	2,088	Maximum Radial Stress [psi]	-1,440
Burial Factor for Earth Load Circumferential Stress	1.08	Total Effective Stress [psi]	31,159
Excavation Factor for Earth Load Circumferential Stress	0.83	Allowable Effective Stress [psi]	32,500
Circumferential Stress from Earth Load [psi]	1,647		
Impact Factor	1.50	Stress [psi]	Calculated
Highway Stiffness Factor for Cyclic Circumferential	16.60	Calculated	Allowable
Highway Geometry Factor for Cyclic Circumferential	1.10		PASS
Cyclic Circumferential Stress [psi]	3,850	Hoop	29,423
Highway Stiffness Factor for Cyclic Longitudinal Stress	13.20	Effective	32,500
Highway Geometry Factor for Cyclic Longitudinal Stress	1.08	Girth Welds	3,006
Cyclic Longitudinal Stress [psi]	3,006	Long. Welds	6,000

Stress [psi]	Calculated	Allowable	PASS/FAIL
Hoop	29,423	32,500	PASS
Effective	31,159	32,500	PASS
Girth Welds	3,006	6,000	PASS
Long. Welds	3,850	11,500	PASS

Notes: Open cut construction, calculations run using HS-20 loading + 15%

Reference: API RP 1102 "Steel Pipelines Crossing Railroads and Highways"

Prepared By Kelsey Kibbe	Approved By	Revision: 13.0.1
-----------------------------	-------------	------------------

Project Vermont Gas Systems		Date 5/24/2016
Location Burlington, VT		

API 1102 - Gas Pipeline Crossing Highway

PIPE AND OPERATIONAL DATA:

Operating Pressure [psi]	1440
Location Class:	3
Operating Temperature [°F]	60.0
Pipe Outside Diameter [in]	12.75
Pipe Wall Thickness [in]	0.312
Pipe Grade:	X65
Specified Minimum Yield Stress	65,000
Design Factor	0.50
Longitudinal Joint Factor	1.0
Temperature Derating Factor	1.000
Pipe Class:	API 5L Electric Resistance Welded
Young's Modulus for Steel [ksi]	30,000
Poisson's Ratio for Steel	0.30
Coefficient of Thermal Expansion [per°F]	0.0000065

SITE AND INSTALLATION DATA:

Soil Type:	Loose sands and gravels
E' - Modulus of Soil Reaction [ksi]	0.5
Er - Resilient Modulus [ksi]	10.0
Average Unit Weight of Soil [lb/ft³]	120.00
Pipe Depth [ft]	3
Bored Diameter [in]	12.75
Installation Temperature [°F]	60.0
Design Wheel Load from Single Axle [kips]	18.4
Design Wheel Load from Tandem Axles [kips]	18.4
Pavement Type:	None
Impact Factor Method:	ASCE - Highway
Safety Factor Applied: API 1102 Procedure	

RESULTS

Hoop Stress [psi]	29,423	Maximum Circumferential Stress [psi]	33,209		
Allowable Hoop Stress [psi]	32,500	Maximum Longitudinal Stress [psi]	11,265		
Stiffness Factor for Earth Load Circumferential Stress	2,088	Maximum Radial Stress [psi]	-1,440		
Burial Factor for Earth Load Circumferential Stress	0.83	Total Effective Stress [psi]	30,360		
Excavation Factor for Earth Load Circumferential Stress	0.83	Allowable Effective Stress [psi]	32,500		
Circumferential Stress from Earth Load [psi]	1,265				
Impact Factor	1.50	Stress [psi]	Calculated	Allowable	PASS/FAIL
Highway Stiffness Factor for Cyclic Circumferential	12.60	Hoop	29,423	32,500	PASS
Highway Geometry Factor for Cyclic Circumferential	1.22	Effective	30,360	32,500	PASS
Cyclic Circumferential Stress [psi]	3,241	Girth Welds	2,275	6,000	PASS
Highway Stiffness Factor for Cyclic Longitudinal Stress	9.30	Long. Welds	3,241	11,500	PASS
Highway Geometry Factor for Cyclic Longitudinal Stress	1.16				
Cyclic Longitudinal Stress [psi]	2,275				

Notes: Open cut construction, calculations run using HS-20 loading + 15%

Reference: API RP 1102 "Steel Pipelines Crossing Railroads and Highways"

Prepared By Kelsey Kibbe	Approved By	Revision: 13.0.1
-----------------------------	-------------	------------------

Project Vermont Gas Systems		
Location Burlington, VT	Date 5/24/2016	

API 1102 - Gas Pipeline Crossing Highway

PIPE AND OPERATIONAL DATA:

Operating Pressure [psi]	1440
Location Class:	3
Operating Temperature [°F]	60.0
Pipe Outside Diameter [in]	12.75
Pipe Wall Thickness [in]	0.312
Pipe Grade:	X65
Specified Minimum Yield Stress	65,000
Design Factor	0.50
Longitudinal Joint Factor	1.0
Temperature Derating Factor	1.000
Pipe Class:	API 5L Electric Resistance Welded
Young's Modulus for Steel [ksi]	30,000
Poisson's Ratio for Steel	0.30
Coefficient of Thermal Expansion [per°F]	0.0000065

SITE AND INSTALLATION DATA:

Soil Type:	Loose sands and gravels
E' - Modulus of Soil Reaction [ksi]	0.5
Er - Resilient Modulus [ksi]	10.0
Average Unit Weight of Soil [lb/ft³]	120.00
Pipe Depth [ft]	4
Bored Diameter [in]	12.75
Installation Temperature [°F]	60.0
Design Wheel Load from Single Axle [kips]	18.4
Design Wheel Load from Tandem Axles [kips]	18.4
Pavement Type:	None
Impact Factor Method:	ASCE - Highway
Safety Factor Applied: API 1102 Procedure	

RESULTS

Hoop Stress [psi]	29,423	Maximum Circumferential Stress [psi]	33,423
Allowable Hoop Stress [psi]	32,500	Maximum Longitudinal Stress [psi]	11,330
Stiffness Factor for Earth Load Circumferential Stress	2,088	Maximum Radial Stress [psi]	-1,440
Burial Factor for Earth Load Circumferential Stress	0.97	Total Effective Stress [psi]	30,550
Excavation Factor for Earth Load Circumferential Stress	0.83	Allowable Effective Stress [psi]	32,500
Circumferential Stress from Earth Load [psi]	1,479		
Impact Factor	1.50	Stress [psi]	Calculated
Highway Stiffness Factor for Cyclic Circumferential	12.60	Allowable	PASS/FAIL
Highway Geometry Factor for Cyclic Circumferential	1.22	Hoop	29,423
Cyclic Circumferential Stress [psi]	3,241	Effective	30,550
Highway Stiffness Factor for Cyclic Longitudinal Stress	9.30	Girth Welds	2,275
Highway Geometry Factor for Cyclic Longitudinal Stress	1.16	Long. Welds	3,241
Cyclic Longitudinal Stress [psi]	2,275		6,000
			11,500

Notes: Open cut construction, calculations run using HS-20 loading + 15%

Reference: API RP 1102 "Steel Pipelines Crossing Railroads and Highways"

Prepared By Kelsey Kibbe	Approved By	Revision: 13.0.1
-----------------------------	-------------	------------------

Project Vermont Gas Systems		Date 5/24/2016
Location Burlington, VT		

API 1102 - Gas Pipeline Crossing Highway

PIPE AND OPERATIONAL DATA:

Operating Pressure [psi]	1440
Location Class:	3
Operating Temperature [°F]	60.0
Pipe Outside Diameter [in]	12.75
Pipe Wall Thickness [in]	0.312
Pipe Grade:	X65
Specified Minimum Yield Stress	65,000
Design Factor	0.50
Longitudinal Joint Factor	1.0
Temperature Derating Factor	1.000
Pipe Class:	API 5L Electric Resistance Welded
Young's Modulus for Steel [ksi]	30,000
Poisson's Ratio for Steel	0.30
Coefficient of Thermal Expansion [per°F]	0.0000065

SITE AND INSTALLATION DATA:

Soil Type:	Loose sands and gravels
E' - Modulus of Soil Reaction [ksi]	0.5
Er - Resilient Modulus [ksi]	10.0
Average Unit Weight of Soil [lb/ft³]	120.00
Pipe Depth [ft]	5
Bored Diameter [in]	12.75
Installation Temperature [°F]	60.0
Design Wheel Load from Single Axle [kips]	18.4
Design Wheel Load from Tandem Axles [kips]	18.4
Pavement Type:	None
Impact Factor Method:	ASCE - Highway
Safety Factor Applied: API 1102 Procedure	

RESULTS

Hoop Stress [psi]	29,423	Maximum Circumferential Stress [psi]	33,273
Allowable Hoop Stress [psi]	32,500	Maximum Longitudinal Stress [psi]	11,223
Stiffness Factor for Earth Load Circumferential Stress	2,088	Maximum Radial Stress [psi]	-1,440
Burial Factor for Earth Load Circumferential Stress	1.08	Total Effective Stress [psi]	30,427
Excavation Factor for Earth Load Circumferential Stress	0.83	Allowable Effective Stress [psi]	32,500
Circumferential Stress from Earth Load [psi]	1,647		
Impact Factor	1.50	Stress [psi]	Calculated
Highway Stiffness Factor for Cyclic Circumferential	12.60	Calculated	Allowable
Highway Geometry Factor for Cyclic Circumferential	1.10		PASS
Cyclic Circumferential Stress [psi]	2,923	Girth Welds	2,118
Highway Stiffness Factor for Cyclic Longitudinal Stress	9.30	Long. Welds	2,923
Highway Geometry Factor for Cyclic Longitudinal Stress	1.08		6,000
Cyclic Longitudinal Stress [psi]	2,118		11,500

Notes: Open cut construction, calculations run using HS-20 loading + 15%

Reference: API RP 1102 "Steel Pipelines Crossing Railroads and Highways"

Prepared By Kelsey Kibbe	Approved By	Revision: 13.0.1
--------------------------	-------------	------------------

Project Vermont Gas Systems		
Location Burlington, VT	Date 5/24/2016	

API 1102 - Gas Pipeline Crossing Highway

PIPE AND OPERATIONAL DATA:

Operating Pressure [psi]	1440
Location Class:	3
Operating Temperature [°F]	60.0
Pipe Outside Diameter [in]	12.75
Pipe Wall Thickness [in]	0.312
Pipe Grade:	X65
Specified Minimum Yield Stress	65,000
Design Factor	0.50
Longitudinal Joint Factor	1.0
Temperature Derating Factor	1.000
Pipe Class:	API 5L Electric Resistance Welded
Young's Modulus for Steel [ksi]	30,000
Poisson's Ratio for Steel	0.30
Coefficient of Thermal Expansion [per°F]	0.0000065

SITE AND INSTALLATION DATA:

Soil Type:	Stiff to very stiff clays and silts
E' - Modulus of Soil Reaction [ksi]	1.0
Er - Resilient Modulus [ksi]	10.0
Average Unit Weight of Soil [lb/ft³]	120.00
Pipe Depth [ft]	3
Bored Diameter [in]	12.75
Installation Temperature [°F]	60.0
Design Wheel Load from Single Axle [kips]	18.4
Design Wheel Load from Tandem Axles [kips]	18.4
Pavement Type:	None
Impact Factor Method:	ASCE - Highway
Safety Factor Applied: API 1102 Procedure	

RESULTS

Hoop Stress [psi]	29,423	Maximum Circumferential Stress [psi]	33,046		
Allowable Hoop Stress [psi]	32,500	Maximum Longitudinal Stress [psi]	11,216		
Stiffness Factor for Earth Load Circumferential Stress	1,934	Maximum Radial Stress [psi]	-1,440		
Burial Factor for Earth Load Circumferential Stress	0.78	Total Effective Stress [psi]	30,216		
Excavation Factor for Earth Load Circumferential Stress	0.83	Allowable Effective Stress [psi]	32,500		
Circumferential Stress from Earth Load [psi]	1,102				
Impact Factor	1.50	Stress [psi]	Calculated	Allowable	PASS/FAIL
Highway Stiffness Factor for Cyclic Circumferential	12.60	Hoop	29,423	32,500	PASS
Highway Geometry Factor for Cyclic Circumferential	1.22	Effective	30,216	32,500	PASS
Cyclic Circumferential Stress [psi]	3,241	Girth Welds	2,275	6,000	PASS
Highway Stiffness Factor for Cyclic Longitudinal Stress	9.30	Long. Welds	3,241	11,500	PASS
Highway Geometry Factor for Cyclic Longitudinal Stress	1.16				
Cyclic Longitudinal Stress [psi]	2,275				

Notes: Open cut construction, calculations run using HS-20 loading + 15%

Reference: API RP 1102 "Steel Pipelines Crossing Railroads and Highways"

Prepared By Kelsey Kibbe	Approved By	Revision: 13.0.1
--------------------------	-------------	------------------

Project Vermont Gas Systems		Date 5/24/2016
Location Burlington, VT		

API 1102 - Gas Pipeline Crossing Highway

PIPE AND OPERATIONAL DATA:

Operating Pressure [psi]	1440
Location Class:	3
Operating Temperature [°F]	60.0
Pipe Outside Diameter [in]	12.75
Pipe Wall Thickness [in]	0.312
Pipe Grade:	X65
Specified Minimum Yield Stress	65,000
Design Factor	0.50
Longitudinal Joint Factor	1.0
Temperature Derating Factor	1.000
Pipe Class:	API 5L Electric Resistance Welded
Young's Modulus for Steel [ksi]	30,000
Poisson's Ratio for Steel	0.30
Coefficient of Thermal Expansion [per°F]	0.0000065

SITE AND INSTALLATION DATA:

Soil Type:	Stiff to very stiff clays and silts
E' - Modulus of Soil Reaction [ksi]	1.0
Er - Resilient Modulus [ksi]	10.0
Average Unit Weight of Soil [lb/ft³]	120.00
Pipe Depth [ft]	4
Bored Diameter [in]	12.75
Installation Temperature [°F]	60.0
Design Wheel Load from Single Axle [kips]	18.4
Design Wheel Load from Tandem Axles [kips]	18.4
Pavement Type:	None
Impact Factor Method:	ASCE - Highway
Safety Factor Applied: API 1102 Procedure	

RESULTS

Hoop Stress [psi]	29,423	Maximum Circumferential Stress [psi]	33,215		
Allowable Hoop Stress [psi]	32,500	Maximum Longitudinal Stress [psi]	11,267		
Stiffness Factor for Earth Load Circumferential Stress	1,934	Maximum Radial Stress [psi]	-1,440		
Burial Factor for Earth Load Circumferential Stress	0.90	Total Effective Stress [psi]	30,366		
Excavation Factor for Earth Load Circumferential Stress	0.83	Allowable Effective Stress [psi]	32,500		
Circumferential Stress from Earth Load [psi]	1,271				
Impact Factor	1.50	Stress [psi]	Calculated	Allowable	PASS/FAIL
Highway Stiffness Factor for Cyclic Circumferential	12.60	Hoop	29,423	32,500	PASS
Highway Geometry Factor for Cyclic Circumferential	1.22	Effective	30,366	32,500	PASS
Cyclic Circumferential Stress [psi]	3,241	Girth Welds	2,275	6,000	PASS
Highway Stiffness Factor for Cyclic Longitudinal Stress	9.30	Long. Welds	3,241	11,500	PASS
Highway Geometry Factor for Cyclic Longitudinal Stress	1.16				
Cyclic Longitudinal Stress [psi]	2,275				

Notes: Open cut construction, calculations run using HS-20 loading + 15%

Reference: API RP 1102 "Steel Pipelines Crossing Railroads and Highways"

Prepared By Kelsey Kibbe	Approved By	Revision: 13.0.1
--------------------------	-------------	------------------

Project Vermont Gas Systems		
Location Burlington, VT	Date 5/24/2016	

API 1102 - Gas Pipeline Crossing Highway

PIPE AND OPERATIONAL DATA:

Operating Pressure [psi]	1440
Location Class:	3
Operating Temperature [°F]	60.0
Pipe Outside Diameter [in]	12.75
Pipe Wall Thickness [in]	0.312
Pipe Grade:	X65
Specified Minimum Yield Stress	65,000
Design Factor	0.50
Longitudinal Joint Factor	1.0
Temperature Derating Factor	1.000
Pipe Class:	API 5L Electric Resistance Welded
Young's Modulus for Steel [ksi]	30,000
Poisson's Ratio for Steel	0.30
Coefficient of Thermal Expansion [per°F]	0.0000065

SITE AND INSTALLATION DATA:

Soil Type:	Stiff to very stiff clays and silts
E' - Modulus of Soil Reaction [ksi]	1.0
Er - Resilient Modulus [ksi]	10.0
Average Unit Weight of Soil [lb/ft³]	120.00
Pipe Depth [ft]	5
Bored Diameter [in]	12.75
Installation Temperature [°F]	60.0
Design Wheel Load from Single Axle [kips]	18.4
Design Wheel Load from Tandem Axles [kips]	18.4
Pavement Type:	None
Impact Factor Method:	ASCE - Highway
Safety Factor Applied: API 1102 Procedure	

RESULTS

Hoop Stress [psi]	29,423	Maximum Circumferential Stress [psi]	33,010
Allowable Hoop Stress [psi]	32,500	Maximum Longitudinal Stress [psi]	11,144
Stiffness Factor for Earth Load Circumferential Stress	1,934	Maximum Radial Stress [psi]	-1,440
Burial Factor for Earth Load Circumferential Stress	0.98	Total Effective Stress [psi]	30,193
Excavation Factor for Earth Load Circumferential Stress	0.83	Allowable Effective Stress [psi]	32,500
Circumferential Stress from Earth Load [psi]	1,384		
Impact Factor	1.50	Stress [psi]	Calculated
Highway Stiffness Factor for Cyclic Circumferential	12.60	Calculated	Allowable
Highway Geometry Factor for Cyclic Circumferential	1.10		PASS/FAIL
Cyclic Circumferential Stress [psi]	2,923	Hoop	29,423
Highway Stiffness Factor for Cyclic Longitudinal Stress	9.30	Effective	32,500
Highway Geometry Factor for Cyclic Longitudinal Stress	1.08	Girth Welds	2,118
Cyclic Longitudinal Stress [psi]	2,118	Long. Welds	6,000

Notes: Open cut construction, calculations run using HS-20 loading + 15%

Reference: API RP 1102 "Steel Pipelines Crossing Railroads and Highways"

Prepared By Kelsey Kibbe	Approved By	Revision: 13.0.1
-----------------------------	-------------	------------------

Project Vermont Gas Systems		Date 5/24/2016
Location Burlington, VT		

API 1102 - Gas Pipeline Crossing Highway

PIPE AND OPERATIONAL DATA:

Operating Pressure [psi]	1440
Location Class:	3
Operating Temperature [°F]	60.0
Pipe Outside Diameter [in]	12.75
Pipe Wall Thickness [in]	0.312
Pipe Grade:	X65
Specified Minimum Yield Stress	65,000
Design Factor	0.50
Longitudinal Joint Factor	1.0
Temperature Derating Factor	1.000
Pipe Class:	API 5L Electric Resistance Welded
Young's Modulus for Steel [ksi]	30,000
Poisson's Ratio for Steel	0.30
Coefficient of Thermal Expansion [per°F]	0.0000065

SITE AND INSTALLATION DATA:

Soil Type:	Medium dense sands and gravels
E' - Modulus of Soil Reaction [ksi]	1.0
Er - Resilient Modulus [ksi]	10.0
Average Unit Weight of Soil [lb/ft³]	120.00
Pipe Depth [ft]	3
Bored Diameter [in]	12.75
Installation Temperature [°F]	60.0
Design Wheel Load from Single Axle [kips]	18.4
Design Wheel Load from Tandem Axles [kips]	18.4
Pavement Type:	None
Impact Factor Method:	ASCE - Highway
Safety Factor Applied: API 1102 Procedure	

RESULTS

Hoop Stress [psi]	29,423	Maximum Circumferential Stress [psi]	33,116
Allowable Hoop Stress [psi]	32,500	Maximum Longitudinal Stress [psi]	11,238
Stiffness Factor for Earth Load Circumferential Stress	1,934	Maximum Radial Stress [psi]	-1,440
Burial Factor for Earth Load Circumferential Stress	0.83	Total Effective Stress [psi]	30,278
Excavation Factor for Earth Load Circumferential Stress	0.83	Allowable Effective Stress [psi]	32,500
Circumferential Stress from Earth Load [psi]	1,172		
Impact Factor	1.50	Stress [psi]	Calculated
Highway Stiffness Factor for Cyclic Circumferential	12.60	Calculated	Allowable
Highway Geometry Factor for Cyclic Circumferential	1.22		PASS/FAIL
Cyclic Circumferential Stress [psi]	3,241	Hoop	29,423
Highway Stiffness Factor for Cyclic Longitudinal Stress	9.30	Effective	32,500
Highway Geometry Factor for Cyclic Longitudinal Stress	1.16	Girth Welds	6,000
Cyclic Longitudinal Stress [psi]	2,275	Long. Welds	11,500

Notes: Open cut construction, calculations run using HS-20 loading + 15%

Reference: API RP 1102 "Steel Pipelines Crossing Railroads and Highways"

Prepared By Kelsey Kibbe	Approved By	Revision: 13.0.1
--------------------------	-------------	------------------

Project Vermont Gas Systems		
Location Burlington, VT	Date 5/24/2016	

API 1102 - Gas Pipeline Crossing Highway

PIPE AND OPERATIONAL DATA:

Operating Pressure [psi]	1440
Location Class:	3
Operating Temperature [°F]	60.0
Pipe Outside Diameter [in]	12.75
Pipe Wall Thickness [in]	0.312
Pipe Grade:	X65
Specified Minimum Yield Stress	65,000
Design Factor	0.50
Longitudinal Joint Factor	1.0
Temperature Derating Factor	1.000
Pipe Class:	API 5L Electric Resistance Welded
Young's Modulus for Steel [ksi]	30,000
Poisson's Ratio for Steel	0.30
Coefficient of Thermal Expansion [per°F]	0.0000065

SITE AND INSTALLATION DATA:

Soil Type:	Medium dense sands and gravels
E' - Modulus of Soil Reaction [ksi]	1.0
Er - Resilient Modulus [ksi]	10.0
Average Unit Weight of Soil [lb/ft³]	120.00
Pipe Depth [ft]	4
Bored Diameter [in]	12.75
Installation Temperature [°F]	60.0
Design Wheel Load from Single Axle [kips]	18.4
Design Wheel Load from Tandem Axles [kips]	18.4
Pavement Type:	None
Impact Factor Method:	ASCE - Highway
Safety Factor Applied: API 1102 Procedure	

RESULTS

Hoop Stress [psi]	29,423	Maximum Circumferential Stress [psi]	33,314
Allowable Hoop Stress [psi]	32,500	Maximum Longitudinal Stress [psi]	11,297
Stiffness Factor for Earth Load Circumferential Stress	1,934	Maximum Radial Stress [psi]	-1,440
Burial Factor for Earth Load Circumferential Stress	0.97	Total Effective Stress [psi]	30,453
Excavation Factor for Earth Load Circumferential Stress	0.83	Allowable Effective Stress [psi]	32,500
Circumferential Stress from Earth Load [psi]	1,370		
Impact Factor	1.50	Stress [psi]	Calculated
Highway Stiffness Factor for Cyclic Circumferential	12.60	Allowable	PASS/FAIL
Highway Geometry Factor for Cyclic Circumferential	1.22	Hoop	29,423
Cyclic Circumferential Stress [psi]	3,241	Effective	30,453
Highway Stiffness Factor for Cyclic Longitudinal Stress	9.30	Girth Welds	2,275
Highway Geometry Factor for Cyclic Longitudinal Stress	1.16	Long. Welds	3,241
Cyclic Longitudinal Stress [psi]	2,275		6,000
			PASS

Notes: Open cut construction, calculations run using HS-20 loading + 15%

Reference: API RP 1102 "Steel Pipelines Crossing Railroads and Highways"

Prepared By Kelsey Kibbe	Approved By	Revision: 13.0.1
-----------------------------	-------------	------------------

Project Vermont Gas Systems		
Location Burlington, VT	Date 5/24/2016	

API 1102 - Gas Pipeline Crossing Highway

PIPE AND OPERATIONAL DATA:

Operating Pressure [psi]	1440
Location Class:	3
Operating Temperature [°F]	60.0
Pipe Outside Diameter [in]	12.75
Pipe Wall Thickness [in]	0.312
Pipe Grade:	X65
Specified Minimum Yield Stress	65,000
Design Factor	0.50
Longitudinal Joint Factor	1.0
Temperature Derating Factor	1.000
Pipe Class:	API 5L Electric Resistance Welded
Young's Modulus for Steel [ksi]	30,000
Poisson's Ratio for Steel	0.30
Coefficient of Thermal Expansion [per°F]	0.0000065

SITE AND INSTALLATION DATA:

Soil Type:	Medium dense sands and gravels
E' - Modulus of Soil Reaction [ksi]	1.0
Er - Resilient Modulus [ksi]	10.0
Average Unit Weight of Soil [lb/ft³]	120.00
Pipe Depth [ft]	5
Bored Diameter [in]	12.75
Installation Temperature [°F]	60.0
Design Wheel Load from Single Axle [kips]	18.4
Design Wheel Load from Tandem Axles [kips]	18.4
Pavement Type:	None
Impact Factor Method:	ASCE - Highway
Safety Factor Applied: API 1102 Procedure	

RESULTS

Hoop Stress [psi]	29,423	Maximum Circumferential Stress [psi]	33,151		
Allowable Hoop Stress [psi]	32,500	Maximum Longitudinal Stress [psi]	11,186		
Stiffness Factor for Earth Load Circumferential Stress	1,934	Maximum Radial Stress [psi]	-1,440		
Burial Factor for Earth Load Circumferential Stress	1.08	Total Effective Stress [psi]	30,318		
Excavation Factor for Earth Load Circumferential Stress	0.83	Allowable Effective Stress [psi]	32,500		
Circumferential Stress from Earth Load [psi]	1,525				
Impact Factor	1.50	Stress [psi]	Calculated	Allowable	PASS/FAIL
Highway Stiffness Factor for Cyclic Circumferential	12.60	Hoop	29,423	32,500	PASS
Highway Geometry Factor for Cyclic Circumferential	1.10	Effective	30,318	32,500	PASS
Cyclic Circumferential Stress [psi]	2,923	Girth Welds	2,118	6,000	PASS
Highway Stiffness Factor for Cyclic Longitudinal Stress	9.30	Long. Welds	2,923	11,500	PASS
Highway Geometry Factor for Cyclic Longitudinal Stress	1.08				
Cyclic Longitudinal Stress [psi]	2,118				

Notes: Open cut construction, calculations run using HS-20 loading + 15%

Reference: API RP 1102 "Steel Pipelines Crossing Railroads and Highways"

Prepared By Kelsey Kibbe	Approved By	Revision: 13.0.1
-----------------------------	-------------	------------------

Project Vermont Gas Systems		
Location Burlington, VT	Date 5/24/2016	

API 1102 - Gas Pipeline Crossing Highway

PIPE AND OPERATIONAL DATA:

Operating Pressure [psi]	1440
Location Class:	3
Operating Temperature [°F]	60.0
Pipe Outside Diameter [in]	12.75
Pipe Wall Thickness [in]	0.312
Pipe Grade:	X65
Specified Minimum Yield Stress	65,000
Design Factor	0.50
Longitudinal Joint Factor	1.0
Temperature Derating Factor	1.000
Pipe Class:	API 5L Electric Resistance Welded
Young's Modulus for Steel [ksi]	30,000
Poisson's Ratio for Steel	0.30
Coefficient of Thermal Expansion [per°F]	0.0000065

SITE AND INSTALLATION DATA:

Soil Type:	Dense to very dense sands and gravels
E' - Modulus of Soil Reaction [ksi]	2.0
Er - Resilient Modulus [ksi]	20.0
Average Unit Weight of Soil [lb/ft³]	120.00
Pipe Depth [ft]	3
Bored Diameter [in]	12.75
Installation Temperature [°F]	60.0
Design Wheel Load from Single Axle [kips]	18.4
Design Wheel Load from Tandem Axles [kips]	18.4
Pavement Type:	None
Impact Factor Method:	ASCE - Highway
Safety Factor Applied: API 1102 Procedure	

RESULTS

Hoop Stress [psi]	29,423	Maximum Circumferential Stress [psi]	32,060
Allowable Hoop Stress [psi]	32,500	Maximum Longitudinal Stress [psi]	10,417
Stiffness Factor for Earth Load Circumferential Stress	1,693	Maximum Radial Stress [psi]	-1,440
Burial Factor for Earth Load Circumferential Stress	0.78	Total Effective Stress [psi]	29,422
Excavation Factor for Earth Load Circumferential Stress	0.83	Allowable Effective Stress [psi]	32,500
Circumferential Stress from Earth Load [psi]	964		
Impact Factor	1.50	Stress [psi]	Calculated
Highway Stiffness Factor for Cyclic Circumferential	9.30	Calculated	Allowable
Highway Geometry Factor for Cyclic Circumferential	1.22	Allowable	PASS/FAIL
Cyclic Circumferential Stress [psi]	2,393	Hoop	29,423
Highway Stiffness Factor for Cyclic Longitudinal Stress	6.20	Effective	32,500
Highway Geometry Factor for Cyclic Longitudinal Stress	1.16	Girth Welds	1,517
Cyclic Longitudinal Stress [psi]	1,517	Long. Welds	6,000

Notes: Open cut construction, calculations run using HS-20 loading + 15%

Reference: API RP 1102 "Steel Pipelines Crossing Railroads and Highways"

Prepared By Kelsey Kibbe	Approved By	Revision: 13.0.1
--------------------------	-------------	------------------

Project Vermont Gas Systems		Date 5/24/2016
Location Burlington, VT		

API 1102 - Gas Pipeline Crossing Highway

PIPE AND OPERATIONAL DATA:

Operating Pressure [psi]	1440
Location Class:	3
Operating Temperature [°F]	60.0
Pipe Outside Diameter [in]	12.75
Pipe Wall Thickness [in]	0.312
Pipe Grade:	X65
Specified Minimum Yield Stress	65,000
Design Factor	0.50
Longitudinal Joint Factor	1.0
Temperature Derating Factor	1.000
Pipe Class:	API 5L Electric Resistance Welded
Young's Modulus for Steel [ksi]	30,000
Poisson's Ratio for Steel	0.30
Coefficient of Thermal Expansion [per°F]	0.0000065

SITE AND INSTALLATION DATA:

Soil Type:	Dense to very dense sands and gravels
E' - Modulus of Soil Reaction [ksi]	2.0
Er - Resilient Modulus [ksi]	20.0
Average Unit Weight of Soil [lb/ft³]	120.00
Pipe Depth [ft]	4
Bored Diameter [in]	12.75
Installation Temperature [°F]	60.0
Design Wheel Load from Single Axle [kips]	18.4
Design Wheel Load from Tandem Axles [kips]	18.4
Pavement Type:	None
Impact Factor Method:	ASCE - Highway
Safety Factor Applied: API 1102 Procedure	

RESULTS

Hoop Stress [psi]	29,423	Maximum Circumferential Stress [psi]	32,209		
Allowable Hoop Stress [psi]	32,500	Maximum Longitudinal Stress [psi]	10,462		
Stiffness Factor for Earth Load Circumferential Stress	1,693	Maximum Radial Stress [psi]	-1,440		
Burial Factor for Earth Load Circumferential Stress	0.90	Total Effective Stress [psi]	29,554		
Excavation Factor for Earth Load Circumferential Stress	0.83	Allowable Effective Stress [psi]	32,500		
Circumferential Stress from Earth Load [psi]	1,113				
Impact Factor	1.50	Stress [psi]	Calculated	Allowable	PASS/FAIL
Highway Stiffness Factor for Cyclic Circumferential	9.30	Hoop	29,423	32,500	PASS
Highway Geometry Factor for Cyclic Circumferential	1.22	Effective	29,554	32,500	PASS
Cyclic Circumferential Stress [psi]	2,393	Girth Welds	1,517	6,000	PASS
Highway Stiffness Factor for Cyclic Longitudinal Stress	6.20	Long. Welds	2,393	11,500	PASS
Highway Geometry Factor for Cyclic Longitudinal Stress	1.16				
Cyclic Longitudinal Stress [psi]	1,517				

Notes: Open cut construction, calculations run using HS-20 loading + 15%

Reference: API RP 1102 "Steel Pipelines Crossing Railroads and Highways"

Prepared By Kelsey Kibbe	Approved By	Revision: 13.0.1
-----------------------------	-------------	------------------

Project Vermont Gas Systems		Date 5/24/2016
Location Burlington, VT		

API 1102 - Gas Pipeline Crossing Highway

PIPE AND OPERATIONAL DATA:

Operating Pressure [psi]	1440
Location Class:	3
Operating Temperature [°F]	60.0
Pipe Outside Diameter [in]	12.75
Pipe Wall Thickness [in]	0.312
Pipe Grade:	X65
Specified Minimum Yield Stress	65,000
Design Factor	0.50
Longitudinal Joint Factor	1.0
Temperature Derating Factor	1.000
Pipe Class:	API 5L Electric Resistance Welded
Young's Modulus for Steel [ksi]	30,000
Poisson's Ratio for Steel	0.30
Coefficient of Thermal Expansion [per°F]	0.0000065

SITE AND INSTALLATION DATA:

Soil Type:	Dense to very dense sands and gravels
E' - Modulus of Soil Reaction [ksi]	2.0
Er - Resilient Modulus [ksi]	20.0
Average Unit Weight of Soil [lb/ft³]	120.00
Pipe Depth [ft]	5
Bored Diameter [in]	12.75
Installation Temperature [°F]	60.0
Design Wheel Load from Single Axle [kips]	18.4
Design Wheel Load from Tandem Axles [kips]	18.4
Pavement Type:	None
Impact Factor Method:	ASCE - Highway
Safety Factor Applied: API 1102 Procedure	

RESULTS

Hoop Stress [psi]	29,423	Maximum Circumferential Stress [psi]	32,071
Allowable Hoop Stress [psi]	32,500	Maximum Longitudinal Stress [psi]	10,386
Stiffness Factor for Earth Load Circumferential Stress	1,693	Maximum Radial Stress [psi]	-1,440
Burial Factor for Earth Load Circumferential Stress	0.98	Total Effective Stress [psi]	29,437
Excavation Factor for Earth Load Circumferential Stress	0.83	Allowable Effective Stress [psi]	32,500
Circumferential Stress from Earth Load [psi]	1,211		
Impact Factor	1.50	Stress [psi]	Calculated
Highway Stiffness Factor for Cyclic Circumferential	9.30	Hoop	29,423
Highway Geometry Factor for Cyclic Circumferential	1.10	Effective	29,437
Cyclic Circumferential Stress [psi]	2,157	Girth Welds	1,412
Highway Stiffness Factor for Cyclic Longitudinal Stress	6.20	Long. Welds	2,157
Highway Geometry Factor for Cyclic Longitudinal Stress	1.08		6,000
Cyclic Longitudinal Stress [psi]	1,412		11,500

Stress [psi]	Calculated	Allowable	PASS/FAIL
Hoop	29,423	32,500	PASS
Effective	29,437	32,500	PASS
Girth Welds	1,412	6,000	PASS
Long. Welds	2,157	11,500	PASS

Notes: Open cut construction, calculations run using HS-20 loading + 15%

Reference: API RP 1102 "Steel Pipelines Crossing Railroads and Highways"

Prepared By Kelsey Kibbe	Approved By	Revision: 13.0.1
--------------------------	-------------	------------------

Lower-In/Padding/Backfill Daily Report

PROJECT NAME: Addison Natural Gas Project Phase 1		DATE: 9/28/16	
PROJECT JOB #: 28757		CONTRACTOR: Michels	
PROJECT LOCATION: New Haven swamp			
WEATHER CONDITIONS: Clear, 60s			
LOWERED-IN:		FROM STA.	TO STA.
		1944+80	1947+80
			300'
PADDING:		EACH	FROM STA.
SANDBAG SUPPORT			TO STA.
BENTONITE			DAILY TOTAL
PADDING BERM			
BACKFILL:		FROM STA.	TO STA.
			DAILY TOTAL
SAFETY:		REMARKS:	
ONE CALLS MADE		YES <input checked="" type="checkbox"/>	NO <input type="checkbox"/>
SAFETY MTG CONDUCTED		YES <input checked="" type="checkbox"/>	NO <input type="checkbox"/>
TRAFFIC CONTROL BARRIERS & SIGN		YES <input checked="" type="checkbox"/>	NO <input type="checkbox"/>
PPE USE COMPLIANCE		YES <input checked="" type="checkbox"/>	NO <input type="checkbox"/>
WORK SITE HOUSEKEEPING		YES <input checked="" type="checkbox"/>	NO <input type="checkbox"/>
JOB SITE SECURED		YES <input checked="" type="checkbox"/>	NO <input type="checkbox"/>
ENVIRONMENTAL CONCERNS:			
COMMENTS: <i>[Handwritten signature]</i>			
Cover on pipe in Lowering-in section is 3' per Darrel and e-mail variance. Lower-in: 1944+80 to 1947+80. Final jeep process done by Bill Jackson and M/L coating crew, then they installed rockshield to final jeep area.			
INSPECTOR NAME: Gary Gerlache			
INSPECTOR SIGNATURE: <i>Gary Gerlache</i>			
CHIEF INSPECTOR REVIEW:			

Lower-In/Padding/Backfill Daily Report

PROJECT NAME: Addison Natural Gas Project Phase 1		DATE: 9/29/16	
PROJECT JOB #: 28757		CONTRACTOR: Michels	
PROJECT LOCATION: New Haven swamp			
WEATHER CONDITIONS: Clear, 70s			
LOWERED-IN:		FROM STA.	TO STA.
		1947+80	1951+80
PADDING:		EACH	FROM STA.
SANDBAG SUPPORT			
BENTONITE			
PADDING BERM			
BACKFILL:		FROM STA.	TO STA.
		1947+80	1951+80
SAFETY:		REMARKS:	
ONE CALLS MADE		YES <input checked="" type="checkbox"/>	NO <input type="checkbox"/>
SAFETY MTG CONDUCTED		YES <input checked="" type="checkbox"/>	NO <input type="checkbox"/>
TRAFFIC CONTROL BARRIERS & SIGN		YES <input checked="" type="checkbox"/>	NO <input type="checkbox"/>
PPE USE COMPLIANCE		YES <input checked="" type="checkbox"/>	NO <input type="checkbox"/>
WORK SITE HOUSEKEEPING		YES <input checked="" type="checkbox"/>	NO <input type="checkbox"/>
JOB SITE SECURED		YES <input checked="" type="checkbox"/>	NO <input type="checkbox"/>
ENVIRONMENTAL CONCERNS:			
COMMENTS:			
Lowering-in has cover of at least 3' (aprx 3' 6" of cover on section). Cover on pipe in Lowering-in section is 3' per Darrel and e-mail variance. Final jeep process done by Bill Jackson and M/L coating crew, then they installed rockshield to final jeep area.			
INSPектор NAME: Gary Gerlache			
INSPектор SIGNATURE: <i>Gary Gerlache</i>			
CHIEF INSPECTOR REVIEW:			